Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, w...
Clinical brain-to-text interfaces are designed for paralysed patients who cannot provide extensive training recordings. Pre-training improves data-efficient generalisation by learning statistical priors across subjects, but these priors critically depend on context. While natural speech might unfold...
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leavin...
Efron et al. (2004) introduced least angle regression (LAR) as an algorithm for linear predictions, intended as an alternative to forward selection with connections to penalized regression. However, LAR has remained somewhat of a "black box," where some basic behavioral properties of LAR output are ...
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with in...
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient...
The success of RL for LLM post-training stems from an unreasonably uninformative source: a single bit of information per rollout as binary reward or preference label. At the other extreme, distillation offers dense supervision but requires demonstrations, which are costly and difficult to scale. We ...
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradient...
Large language models (LLMs) have demonstrated strong reasoning capabilities through step-by-step chain-of-thought (CoT) reasoning. Nevertheless, at the limits of model capability, CoT often proves insufficient, and its strictly sequential nature constrains test-time scalability. A potential alterna...
AI agents often fail in ways that are difficult to localize because executions are probabilistic, long-horizon, multi-agent, and mediated by noisy tool outputs. We address this gap by manually annotating failed agent runs and release a novel benchmark of 115 failed trajectories spanning structured A...
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long...
Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. ...
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, ex...
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented wi...
Autoregressive large language models (LLMs) have achieved remarkable success in many complex tasks, yet they can still fail in very simple logical reasoning such as the "reversal curse" -- when trained on forward knowledge data of the form "$A \rightarrow B$" (e.g., Alice's husband is Bob), the mode...